

Coarse-graining breakout session

Dan S. Bolintineanu 2017 LAMMPS Workshop and Symposium 8/3/2017

Outline

Meso/macroscopic models in LAMMPS

- Contributed talk: Svetoslav Nikolov
 "Modeling non-linear micromechanics of hydrogels using dissipative particle dynamics"
- DPD, SPH, SMD
- Hydrodynamics: SRD, Lattice Boltzmann, FLD, Mango-Selm, ...
- Granular
- Peridynamics

Molecular and macroscopic:

USER-ATC package

'Detailed' MD to coarse-grained MD

- Iterative Boltzmann, force matching, ...
- Tools: VOTCA, fix mscg, PyCGTOOL, Auto_MARTINI
- CG force fields: MARTINI, USER-ELBA

Meso/macroscopic models in LAMMPs Sandia National Laboratories

"Top-down": particles are simply a numerical device for solving governing physics

- → typically mass, momentum conservation, i.e. fluid dynamics (NS)
- → many other physics also possible

DPD:

See George Karniadakis talk! → **USER-MESO**

See Tim Mattox talk! → USER-DPD: NPT, NPH, equation of state → includes

chemical reaction

pair_style dpd: 'plain vanilla' DPD

pair_style dpd/tstat: apply pairwise DPD thermostat to any pair-style

angular-momentum conserving variant?

SPH:

Definitely not 'physical' particles, just a Lagrangian solver of continuum equations!

USER-SPH, USER-SMD (mitigates 'tensile instabilities')

iSPH – implicit time-stepping, coupled to Trilinos

Trask, Nathaniel, et al. Comp Meth Appl Mech Eng 2015

Related methods:

SDPD: 'thermostatted' SPH, i.e. solver for fluctuating hydrodynamics (Espanol and Revenga, PRE 2003)

SPH gallery

USER-SPH (Georg Ganzenmuller):

DualSPHysics:

Hydrodynamics in colloidal suspensions

Colloid particles macroscopic ~1 micron: COLLOID package, fix nve/sphere Solvent: (fluctuating) hydrodynamics!

- Particle methods (DPD, etc.)
- Lattice Boltzmann (USER-LB), stochastic rotation dynamics (SRD)
- FLD: simplified version of Stokesian dynamics
- MANGO-SELM: Atzberger group; solvers of fluctuating hydrodynamics

Hydrodynamics in colloidal suspensions

_

SRD/MPCD

DPD*

All particle methods suffer from:

- Compressibility (not a big deal)
- 'Lubrication gap' resolution problems
- Boundary conditions can be tricky

Implicit methods (SD, FLD):

- Limited to simple particle shapes, domain geometries
- Newtonian only

Structure

Bolintineanu et al, CPM 2014

Granular

pair gran/hertz:

Analytical Hertz solution (1882 for normal contact force:

$$\delta = R_i + R_j - \|\mathbf{r}_i - \mathbf{r}_j\| > 0$$

$$\mathbf{F}_n = k_n \sqrt{R} \delta^{3/2} \mathbf{n} - \sqrt{R} \delta m \gamma_n \mathbf{v}_n$$

Dissipative term; Many damping models

What about oblique contact/tangential force?

→ friction, with option of accumulated shear

pair gran/hertz/history

$$\mathbf{F}_S = -k_S \int_{t0}^t \mathbf{v}_{tR}(\tau) d\tau - \eta_T \mathbf{v}_{tR}$$

$$v_{tR} = v_t - (R_i \Omega_i + R_j \Omega_j) \times n$$

$$\|\boldsymbol{F}_S\| \le \mu_S \|\boldsymbol{F}_n\|$$

Needs to account for rotating frame of reference

Also see: LIGGGHTS/CFDEM project

Peridynamics

- Nonlocal formulation of solid mechanics
- Good alternative to e.g. XFEM for modeling fracture/fragmentation
- PERI package in LAMMPS
- Not frequently maintained, much of peridynamics development now in Peridigm

Stewart Silling, Mike Parks, many others (SNL)

Silling, Stewart A. "Reformulation of elasticity theory for discontinuities and long-range forces." *Journal of the Mechanics and Physics of Solids* 48.1 (2000): 175-209.

Molecular and macroscopic

USER-AtC package:

- Molecular simulation in one region coupled to continuum (e.g. FEM)
- Couple continuum equations throughout domain to molecular system
- On-the-fly analysis of MD to extract continuum quantities

Reese Jones, Jeremy Templeton (both SNL)

'Detailed' MD to coarse-grained MD

Basic idea: access larger length/time scales by using less detailed representations

This works because:

- 1. Fewer particles!
- 2. 'Softer', sometimes simpler potentials → enables larger time step
- Not limited to atomistic > bead-spring; hierarchical also possible

Methods

Need to:

- 1.) Select chemical groups to coarse-grain
- 2.) Obtain parameters

'DIY' coarse-graining, e.g.

Tools:

Force matching

VOTCA, fix mscg, PyCGTOOL, Auto_MARTINI

(Iterative) Boltzmann inversion

$$U_{\alpha\beta,i}(r) = -k_{\rm B} T \ln(g_{\alpha\beta}(r))$$

$$U_{\alpha\beta,i+1}(r) = U_{\alpha\beta,i}(r) + k_{\rm B} T \ln\left(\frac{g_{\alpha\beta,i}(r)}{g_{\alpha\beta}(r)}\right)$$

Note: all of these map only static properties, dynamics may be way off!

'Pre-packaged' CG force fields:

MARTINI, ELBA, USER-CGDNA, various UA (e.g. OLPS-UA)